skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vlasiuk, Oleksandr"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper is devoted to spherical measures and point configurations optimizing three-point energies. Our main goal is to extend the classic optimization problems based on pairs of distances between points to the context of three-point potentials. In particular, we study three-point analogues of the sphere packing problem and the optimization problem for p p -frame energies based on three points. It turns out that both problems are inherently connected to the problem of nearly orthogonal sets by Erdős. As the outcome, we provide a new solution of the Erdős problem from the three-point packing perspective. We also show that the orthogonal basis uniquely minimizes the p p -frame three-point energy when 0 > p > 1 0>p>1 in all dimensions. The arguments make use of multivariate polynomials employed in semidefinite programming and based on the classical Gegenbauer polynomials. For p = 1 p=1 , we completely solve the analogous problem on the circle. As for higher dimensions, we show that the Hausdorff dimension of minimizers is not greater than d −<#comment/> 2 d-2 for measures on S d −<#comment/> 1 \mathbb {S}^{d-1}
    more » « less
  2. Abstract It is common in mesoscopic systems to find instances where several charges interact among themselves. These particles are usually confined by an external potential that shapes the symmetry of the equilibrium charge configuration. In the case of classical charges moving on a plane and repelling each other via the Coulomb potential, they possess a ground state à la Thomson or Wigner crystal. As the number of particles N increases, the number of local minima grows exponentially and direct or heuristic optimization methods become prohibitively costly. Therefore the only feasible approximation to the problem is to treat the system in the continuum limit. Since the underlying framework is provided by potential theory, we shall by‐pass the corresponding mathematical formalism and list the most common cases found in the literature. Then we prove a (albeit known) mathematical correspondence that will enable us to re‐discover analytical results in electrostatics. In doing so, we shall provide different methods for finding the equilibrium surface density of charges, analytical and numerical. Additionally, new systems of confined charges in three‐dimensional surfaces will be under scrutiny. Finally, we shall highlight exact results regarding a modified power‐law Coulomb potential in thed‐dimensional ball, thus generalizing the existing literature. 
    more » « less